
Computer Graphics

2 - Rendering Basics

Yoonsang Lee

Hanyang University

Spring 2023

Hanyang University CSE4020, Yoonsang Lee

Summary of Course Intro

• Questions

– https://www.slido.com/ - Join #cg-ys

• Quiz

– https://www.slido.com/ - Join #cg-ys - Polls

– You must submit all quiz answers in the correct format to receive
points.

– Whether a submitted answer is correct or not has nothing to do with
your quiz score!

• Language

– I’ll “paraphrase” the explanation in Korean for most slides.

• You MUST read "1 – Course Intro.pdf" CAREFULLY.

https://www.slido.com/
https://www.slido.com/

Hanyang University CSE4020, Yoonsang Lee

Outline

• Basic Concepts for Rendering

• Rendering Approaches

– Rasterization

– Ray Tracing

Hanyang University CSE4020, Yoonsang Lee

Basic Concepts: Rendering

• Rendering is the process of

generating an image from a 2D

or 3D model (scene) by means of

a computer program. [Wikipedia]

• Rendering output can be …

– saved as an image file,

– or saved as a video file (consisting of

many images),

– or stored in frame buffer for display.

Encanto, 2021

Roblox

Hanyang University CSE4020, Yoonsang Lee

Basic Concepts: Frame Buffer

• Frame buffer is the portion of memory to hold the

bitmapped image that is sent to the (raster) display device.

• Typically stored on the graphic card’s memory.

– But integrated graphics (e.g. Intel HD Graphics) use the main

memory to store the frame buffer.

• A frame buffer is characterized by its
width, height, and depth.

– E.g. The frame buffer size for 4K UHD
resolution with 32bit color depth = 3840 x
2160 x 32 bits

Hanyang University CSE4020, Yoonsang Lee

• Using two frame buffers for rendering and displaying:

– Display image data in front buffer

– Draw new image data to back buffer

– When drawing image data for one frame is done, swap front and

back buffer.

• Allows drawing a new image to the back buffer while

displaying an image to the front buffer.

→ Higher frame rate, no (or less) artifacts such as flickering

• Most graphics applications are working with double

buffering.

Basic Concepts: Double Buffering

Hanyang University CSE4020, Yoonsang Lee

Basic Concepts: Image Plane

• Image plane is the conceptual plane that

represents the actual display screen through

which a user views (a rendered image of) a

virtual 3D scene.

Hanyang University CSE4020, Yoonsang Lee

Example of Rendering a 3D Scene - 1

Red: view volume, Blue: objects 3D scene

Camera

* This image is from http://www.opengl-tutorial.org/beginners-tutorials/tutorial-3-matrices/

Hanyang University CSE4020, Yoonsang Lee

Example of Rendering a 3D Scene - 1

Rendering output

Hanyang University CSE4020, Yoonsang Lee

Example of Rendering a 3D Scene - 2

3D scene

Camera

Hanyang University CSE4020, Yoonsang Lee

Example of Rendering a 3D Scene 2

Rendering output

* This image is generated by rendering "Lone Monk" blender demo scene by Carlo Bergonzini

Hanyang University CSE4020, Yoonsang Lee

Render Output

• The result of rendering is a 2D image comprises of picture
elements or pixels.

• That is, rendering is the process of computing each pixel
color in the final image based on 3D scene information.

Hanyang University CSE4020, Yoonsang Lee

Rendering Approaches

• How to compute each pixel color?

• Rasterization

• Ray tracing

• Recent emerging approach:

– Neural rendering: Use deep neural networks to learn

representation of scenes (e.g. NeRF)

Hanyang University CSE4020, Yoonsang Lee

Rasterization

• Primitive-by-primitive approach

– primitive: triangle, line, point, ...

• Each primitive determines which pixel in the image is
affected and determines the color of that pixel.

for each primitive in scene

transform the primitive to viewport

find pixels for the primitive

set color of the pixels based on texture and lighting model

(triangle is rendered to screen)

Hanyang University CSE4020, Yoonsang Lee

Rasterization Pipeline

Vertex

Processing

Primitive

Processing

Scan Conversion

(Rasterization (in a

narrow sense))

Fragment

Processing

Per-sample

Operations

: transforms

vertices to

screen space

: converts each

polygon into a set

of fragments

fragments: Similar

to pixels. There can

be more than one

fragment per pixel.

(e.g.: MSAA)

: determines

color of each

fragment with

light & texture

: depth test,

alpha blending, …

• A.k.a. rendering pipeline or graphics pipeline.

: assembles

polygons

Hanyang University CSE4020, Yoonsang Lee

Rendering Pipeline again

Vertex Processing

Primitive Processing

Scan Conversion

(Rasterization (in a narrow

sense))

Fragment Processing

Per-sample Operations

input: vertices in each object's space

vertices in screen space

primitives in screen space

fragments

– at least one fragment per pixel

shaded fragments

output: image

Hanyang University CSE4020, Yoonsang Lee

Ray Tracing

for each pixel in image(plane)

determine which object should be shown at the pixel

set color of the pixel based on texture and lighting model

(ray intersection is rendered to screen)

• Pixel-by-pixel approach

• Each ray goes through each pixel in image plane from eye
position.

• Color of each pixel is determined based on which object the
ray intersects with.

Hanyang University CSE4020, Yoonsang Lee

Types of Rays

• Eye rays

– from eye to surface, passing through each
pixel

• Shadow (Illumination) rays

– from surface point to light source

• Reflection rays

– from surface point in mirror direction

• Refraction rays

– from surface point in refracted direction

Hanyang University CSE4020, Yoonsang Lee

Eye Rays

• Casted from eye (or camera) to surface, passing
through a pixel.

• Find closest surface point hit by the ray.

Hanyang University CSE4020, Yoonsang Lee

Shadow (Illumination) Rays

• Casted from surface point to each light source.

– If the ray is blocked by an opaque object, no

contribution of the light for the pixel color (shadow).

Hanyang University CSE4020, Yoonsang Lee

Shadow (or Illumination) Rays

• Casted from surface point to each light source.

– If the ray reaches the light, compute the contribution of

the light for the pixel color using local illumination

model.

Hanyang University CSE4020, Yoonsang Lee

Reflection Rays

• Casted from surface point in mirror direction if the surface

is specular (following the laws of reflection).

• If this ray reaches other surfaces, cast shadow / reflection /

refraction rays from that surface point again (recursive).

surface normal

Hanyang University CSE4020, Yoonsang Lee

Refraction Rays

• Casted from surface point in refracted direction if the

surface is transparent (following Snell’s law).

• If this ray reaches other surfaces, cast shadow / reflection /

refraction rays from that surface point again (recursive).

Hanyang University CSE4020, Yoonsang Lee

Rasterization vs. Ray Tracing

* This image is from Nvidia

Hanyang University CSE4020, Yoonsang Lee

Rasterization – Pros & Cons

• Pros

– Just render stream of triangles – no need to keep entire scene

data

– Good for parallelism → Fast!

• Cons

– No unified processing of shadows, reflection, transparency

– May produce lower-quality results

• Traditionally used for real-time applications

– e.g. Games using OpenGL or DirectX

Hanyang University CSE4020, Yoonsang Lee

Ray Tracing – Pros & Cons

• Pros

– Generalized way of handling shadows, reflections,

transparency – just intersection with a ray

– Often produce higher-quality results

• Cons (of the traditional view)

– Too slow for real-time applications

– Hard to implement in hardware

• Traditionally used for offline rendering for films

– e.g. Animation films produced using 3D authoring tools such

as Maya, Blender, etc

Hanyang University CSE4020, Yoonsang Lee

Recent Ray Tracing Technology

• Cons (of the traditional view): Ray tracing was considered to be ...

– Too slow for real-time applications

– Hard to implement in hardware

• However, they are not as true anymore as they used to be.

– Slower than rasterization, but not too slow for real-time.

– Harder than rasterization, but not impossible to implement in hardware.

• Reason: the advancement of technology

– Hardware such as Nvidia RTX series

– API such as DirectX Raytracing, Vulkan RT, ...

• This is a change not too long ago.

– The first real-time raytracing demo "Reflections" was released in March 2018.

– https://youtu.be/lMSuGoYcT3s

https://youtu.be/lMSuGoYcT3s

Hanyang University CSE4020, Yoonsang Lee

In This Course,

• The lectures focus primarily on the fundamental

concepts of computer graphics that are common to

all rendering methods.

– Movement & placement: Transformations, Hierarchical

Modeling, Orientation & Rotation, Kinematics &

Animation, Curves

– Shape & appearance: Mesh, Lighting, Texture

Mapping, Curves

Hanyang University CSE4020, Yoonsang Lee

In This Course,

• Some lectures cover the fundamental concepts that are
specific to rasterization.

– Mapping to 2D screen in rasterization: Viewing /
Projection / Viewport transformations

– Appearance in rasterization: Polygon Shading

– Rasterization process: Rasterization Pipeline, Scan
Conversion & Visibility

• The labs cover modern OpenGL, which is still one of
the most popular rasterization APIs.

– Modern OpenGL is used as a tool to review the concepts
learned in lectures.

Hanyang University CSE4020, Yoonsang Lee

Why Rasterization?

• This course does not cover ray tracing or neural

rendering.

• Because...

– Rasterization is still crucial in real-time rendering.

– Still widely used in real-time rendering.

– Not enough time to cover all.

Hanyang University CSE4020, Yoonsang Lee

Lab Session

• Now, let's start the lab today.

	슬라이드 1: Computer Graphics 2 - Rendering Basics
	슬라이드 2: Summary of Course Intro
	슬라이드 3: Outline
	슬라이드 4: Basic Concepts: Rendering
	슬라이드 5: Basic Concepts: Frame Buffer
	슬라이드 6: Basic Concepts: Double Buffering
	슬라이드 7: Basic Concepts: Image Plane
	슬라이드 8: Example of Rendering a 3D Scene - 1
	슬라이드 9: Example of Rendering a 3D Scene - 1
	슬라이드 10: Example of Rendering a 3D Scene - 2
	슬라이드 11: Example of Rendering a 3D Scene 2
	슬라이드 12: Render Output
	슬라이드 13: Rendering Approaches
	슬라이드 14: Rasterization
	슬라이드 15: Rasterization Pipeline
	슬라이드 16: Rendering Pipeline again
	슬라이드 17: Ray Tracing
	슬라이드 18: Types of Rays
	슬라이드 19: Eye Rays
	슬라이드 20: Shadow (Illumination) Rays
	슬라이드 21: Shadow (or Illumination) Rays
	슬라이드 22: Reflection Rays
	슬라이드 23: Refraction Rays
	슬라이드 24: Rasterization vs. Ray Tracing
	슬라이드 25: Rasterization – Pros & Cons
	슬라이드 26: Ray Tracing – Pros & Cons
	슬라이드 27: Recent Ray Tracing Technology
	슬라이드 28: In This Course,
	슬라이드 29: In This Course,
	슬라이드 30: Why Rasterization?
	슬라이드 31: Lab Session

